Apertura. Revista de innovación educativa‏

El futuro de la interacción aprendiz-interfaz, una visión desde la tecnología educativa

Nayiv Amin Jesús Assaf Silva

Resumen


A partir de las tres interacciones de Moore de la educación a distancia, Hillman, Willis y Gunawardena (1994) propusieron una interacción tecnológica en el dominio instruccional: la interacción aprendiz-interfaz. A veintiséis años de su propuesta, esta interacción está más vigente que nunca ante el alto grado de tecnologización de la tecnología educativa por su vinculación con la inteligencia artificial. En este artículo abordamos el pasado, presente y futuro de esta cuarta interacción, y exponemos los tres rubros tecnológicos más importantes en torno a la educación para el desarrollo futuro de la interacción aprendiz-interfaz: evaluación de interacciones tecnológicas en el dominio del aprendizaje (usabilidad y experiencia de usuario), capacidades de agentes inteligentes educativos (inteligencia artificial y procesamiento de lenguaje natural) y alcance de algoritmos predictivos en educación (deep learning y big data), elementos fundamentales, aunque no los únicos, para el diseño de la próxima generación de interfaces interactivas multimedia inteligentes 2&3D con propósito educativo. Planteamos la necesidad de un modelo interaccional unificado, basado en el modelo triangular Anderson-Moore, y recurrimos al teorema de equivalencia de Anderson para hipotetizar un posible escenario futuro a corto, mediano y largo plazo de la educación altamente tecnológica.


Palabras clave


Interacción humano-computadora; interacción estudiante-interfaz; tecnología educativa; inteligencia artificial; agentes inteligentes; diseño tecnológico; Covid-19

Texto completo:

XML HTML PDF PDF (English) MP3

Referencias


Akyol, Z. & Garrison, D. R. (2013). Educational communities of inquiry: Theoretical framework.

Research and practice. Information sciences reference, IGI Global.

Alexandru, A.; Tîrziu, E.; Tudora, E. & Bica, O. (2015). Enhanced education by using intelligent agents in multi-agent adaptive e-learning systems. Studies in Informatics and Control, 24(1), 13-22. Recuperado de: http://doi.org/10.24846/v24i1y201502

Alsharif, N. Z. & Roche, V. F. (2010). Promoting key interactions in a distance medicinal chemistry course.

Currents in Pharmacy Teaching and Learning, 2(2), 114-125. Recuperado de: http://doi.org/10.1016/j.cptl.2010.01.003

Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction. The International Review of Research in Open and Distributed Learning, 4(2).

Anderson, T. & Garrison, D. R. (1998). Learning in a networked world: New roles and responsibilities,

en Distance Learners in Higher Education: Institutional responses for quality outcomes. Madison, Wi.: Atwood.

Baykal, S. I.; Bulut, D. & Sahingoz, O. K. (2018, April). Comparing deep learning performance on BigData by using CPUs and GPUs, en 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) (pp. 1-6). IEEE.

Bray, E.; Aoki, K. & Dlugosh, L. (2008). Predictors of learning satisfaction in Japanese online distance learners. International Review of Research in Open and Distance Learning, 9(3).

Bringula, R. P.; Álvarez, J. N.; Evangelista, M. A. & So, R. B. (2017). Learner-interface interactions with mobile-assisted learning in mathematics: Effects on and relationship with mathematics performance, en K-12 STEM Education: Breakthroughs in Research and Practice (pp. 305-321). IGI Global.

Bringula, R. P.; Basa, R. S.; De la Cruz, C. & Rodrigo, M. M. T. (2016). Effects of prior knowledge in mathematics on learner-interface interactions in a learning-by-teaching intelligent tutoring system. Journal of Educational Computing Research, 54(4), 462-482.

Chang, Y. (2009). An action research of integrating computer technology in academic writing for undergraduates. World Academy of Science, Engineering and Technology, 37, 981-984.

Cho, M. H. & Cho, Y. (2017). Self-regulation in three types of online interaction: A scale development. Distance Education, 38(1), 70-83.

Cho, T. (2011). The impact of types of interaction on student satisfaction in online courses. International Journal on E-Learning: Corporate, Government, Healthcare, and Higher Education, 10(2), 109-125.

Chou, C.; Peng, H. & Chang, C. (2010). The technical framework of interactive functions for course-management systems: Students’ perceptions, uses, and evaluations. Computers and Education, 55(3), 1004-1017. http://doi.org/10.1016/j.compedu.2010.04.011

Clark, R. C. (2020). Evidence-based training methods: A guide for training professionals. American Society for Training and Development.

Cope, B.; Kalantzis, M. & Searsmith, D. (2020). Artificial intelligence for education: Knowledge

and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory. http://doi.org/10.1080/00131857.2020.1728732

Danesh, A.; Bailey, A. & Whisenand, T. (2015). Technology and instructor-interface interaction in distance education. International Journal of Business and Social Science, 6(2).

Dewey, J. (1916). Democracy and education: An introduction to the philosophy of education. Macmillan.

Doleck, T.; Lemay, D. J.; Basnet, R. B. & Bazelais, P. (2019). Predictive analytics in education: A comparison

of deep learning frameworks. Education and Information Technologies, 1-13. http://doi.org/10.1007/s10639-019-10068-4

Dwivedi, Y. K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T. & Galanos, V. (2019). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management,101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Garg, T. (2020). Artificial intelligence in medical education. American Journal of Medicine, 133(2), e68. http://doi.org/10.1016/j.amjmed.2019.08.017

Gunawardena, C. (1999). The challenge of designing and evaluating ‘interaction’ in web-based distance education, en WebNet World Conference on the WWW and Internet (pp. 451-456). Association for the Advancement of Computing in Education (AACE).

Gunesekera, A. I.; Bao, Y. & Kibelloh, M. (2019). The role of usability on e-learning user interactions and satisfaction: A literature review. Journal of Systems and Information Technology, 21(3), 368-394

Hillman, D. C.; Willis, D. J. & Gunawardena, C. N. (1994). Learner-interface interaction in distance

education: An extension of contemporary models and strategies for practitioners. American Journal of Distance Education, 8(2), 30-42.

Hsiao, E. L. & Huang, X. (2014). Promoting interactivity in a distance course for nontraditional students. RealLife Distance Education: Case Studies in Practice, 235.

Jancheski, M. (2017). Interaction in distance education, en 11th International Conference on Technology, Education and Development (INTED). Location: Valencia, SPAIN: INTED2017: 11th international technology, education and development conference Book Series: INTED Proceedings.

Jia, J. (2020). Educational stages and interactive learning: From kindergarten to workplace training. Information sciences reference, 437. IGI Global.

Kennepohl, D. (2020). Editorial. International Review of Research in Open and Distributed Learning, 21(2), i-iii. Recuperado de: https://doi.org/10.19173/irrodl.v21i2.4812

Koola, P. M.; Ramachandran, S. & Vadakkeveedu, K. (2016). How do we train a stone to think? A review of machine intelligence and its implications. Theoretical Issues in Ergonomics Science, 17(2), 211-238.

Kumar, S. G. & Reddy, G. H. (2019). Prediction of education performance using deep learning. International Journal of Innovative Technology and Exploring Engineering, 8(7),361-364

Lee, M. K. (2015). Effects of mobile phone-based app learning compared to computer-based web learning on nursing students: Pilot randomized controlled trial. Healthcare Informatics Research, 21(2), 125-133. http://doi.org/10.4258/hir.2015.21.2.125

Longo, L. (2020). Empowering qualitative research methods in education with artificial intelligence. http://doi.org/10.1007/978-3-030-31787-4_1

Luckin, R. & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences-driven approach. British Journal of Educational Technology, 50(6), 2824-2838.

Luo, H. & Lei, J. (2012). Emerging technologies for interactive learning in the ICT age. Educational stages and interactive learning: From kindergarten to workplace training (pp. 73-91). http://doi.org/10.4018/978-1-4666-0137-6.ch005

Martin, F.; Parker, M. A. & Deale, D. F. (2012). Examining interactivity in synchronous virtual classrooms. International Review of Research in Open and Distance Learning, 13(3), 228-261.

Mayer, R. E. (ed.) (2014). The Cambridge handbook of multimedia learning. Cambridge University Press.

Mladenova, M. & Kirkova, D. (2014). Role of student interaction interface in web-based distance learning, en ACHI 2014-7th International Conference on Advances in Computer-Human Interactions (pp. 307-312).

Mohan, S.; Ramea, K.; Price, B.; Shreve, M.; Eldardiry, H. & Nelson, L. (2019). Building Jarvis-A learner-aware conversational trainer. IUI Workshops on User-Aware Conversational Agents in conjunction with ACM Intelligent User Interfaces 2019, Los Angeles, California.

Moore, M. G. (1989). Editorial: Three types of interaction. The American Journal of Distance Education, 3(2).

Morgan, H. (2020). Best practices for implementing remote learning during a pandemic. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 93(3), 135-141. Recuperado de: https://doi.org/10.1080/00098655.2020.1751480

Nacu, D.; Martin, C. K. & Pinkard, N. (2018). Designing for 21st century learning online: A heuristic method to enable educator learning support roles. Educational Technology Research and Development, 66(4), 1029-1049. http://doi.org/10.1007/s11423-018-9603-0

Nahar, L.; Sulaiman, R. & Jaafar, A. (2020). An interactive math braille learning application to assist blind students in Bangladesh. Assistive Technology (en prensa). https://doi.org/10.1080/10400435.2020.1734112

Nappi, C. & Cuocolo, A. (2020). The machine learning approach: Artificial intelligence is coming to support critical clinical thinking. Journal of Nuclear Cardiology, 27(1), 156-158. http://doi.org/10.1007/s12350-018-1344-2

Nathoo, A.; Bekaroo, G.; Gangabissoon, T. & Santokhee, A. (2020). Using tangible user interfaces for teaching concepts of internet of things. Interactive Technology and Smart Education (en prensa). https://doi.org/10.1108/ITSE-09-2019-0061

Piaget, J. (1971). Genetic epistemology. Norton & Co Inc. Raees, M. & Ullah, S. (2020). THE-3DI: Tracing head and eyes for 3D interactions. Multimedia Tools and Applications, 79(1-2), 1311-1337.

Rampton, V.; Mittelman, M. & Goldhahn, J. (2020). Implications of artificial intelligence for medical education. The Lancet Digital Health, 2(3), e111-e112. http://doi.org/10.1016/S2589-7500(20)30023-6

Rautopuro, J.; Pöntinen, S. & Kukkonen, J. (2006). Towards the information society - the case of Finnish teacher education. Informatics in Education, 5(2), 285-300.

Ricco, J.; Guetarni, F. & Kolh, P. (2020). Learning from artificial intelligence and big data in health care. European Journal of Vascular and Endovascular Surgery. http://doi.org/10.1016/j.ejvs.2020.01.019

Schlegelmilch, J. & Douglas, C. (2020). Initial Covid-19 closure strategies adopted by a convenience sample of US school districts: Directions for future research. Disaster Medicine and Public Health Preparedness, 1-4. http://doi.org/10.1017/dmp.2020.147

Scolari, C. A. (2018). Las leyes de la interfaz: diseño, ecología evolución, tecnología (vol. 136). Editorial: Gedisa.

Şimşek, Ö.; Atman, N.; Inceoğlu, M. M. & Arikan, Y. D. (2010). Diagnosis of learning styles based on active/reflective dimension of Felder and Silverman’s learning style model in a learning management system, en International Conference on Computational Science and Its Applications (pp. 544-555). Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-12165-4-43

Tidwell, J.; Brewer, C. & Valencia-Brooks, A. (2020). Designing interfaces: Patterns for effective interaction design. O’Reilly Media, Inc.

UNESCO. (2020). Covid-19 Impact on Education. Recuperado de: https://en.unesco.org/covid19/educationresponse

Villegas-Ch, W.; Arias-Navarrete, A. & Palacios-Pacheco, X. (2020). Proposal of architecture for the integration of a chatbot with artificial intelligence in a smart campus for the improvement of learning. Sustainability (Switzerland), 12(4). http://doi.org/10.3390/su12041500

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard University Press.

Walsh, K. (2020). Artificial intelligence and healthcare professional education: Superhuman resources for health? Postgraduate Medical Journal, 96(1133), 121-122. http://doi.org/10.1136/postgradmedj-2019-137132

Wang, C. & Tsai, W. (2016). Elucidating how interface design and cognitive function affect learning performance in the enterprise resource planning (ERP) software system. Journal of Testing and Evaluation, 44(1), 31-46. http://doi.org/10.1520/JTE20140044

Wang, H.; Rush, B. R.; Wilkerson, M. & Van Der Merwe, D. (2014). Exploring the use of tablet pcs in veterinary medical education: Opportunity or obstacle? Journal of Veterinary Medical Education, 41(2), 122-131. http://doi.org/10.3138/jvme.1013-145R1

WBIS (2018). Proceedings -2017 international workshop on big data and information security, en Proceedings – WBIS 2017: 2017 International Workshop on Big Data and Information Security.

Wong, G. K. W.; Ma, X.; Dillenbourg, P. & Huen, J. (2020). Broadening artificial intelligence education in K-12: Where to start? ACM Inroads, 11(1), 20-29. http://doi.org/10.1145/3381884

Xiao, J. (2017). Learner-content interaction in distance education: The weakest link in interaction research. Distance Education, 38(1), 123-135.

Yang, S. & Bai, H. (2020). The integration design of artificial intelligence and normal students’ education. the Journal of Physics: Conference Series, 1453(1). http://doi.org/10.1088/1742-6596/1453/1/012090




DOI: http://dx.doi.org/10.32870/Ap.v12n2.1910

Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM

Enlaces refback

  • No hay ningún enlace refback.






Apertura vol. 16, núm. 1, abril - septiembre 2024, es una revista científica especializada en innovación educativa en ambientes virtuales que se publica de manera semestral por la Universidad de Guadalajara, a través de la Coordinación de Recursos Informativos del Sistema de Universidad Virtual. Oficinas en Av. La Paz 2453, colonia Arcos Sur, CP 44140, Guadalajara, Jalisco, México. Tel.: 3268-8888, ext. 18775, www.udgvirtual.udg.mx/apertura, apertura@udgvirtual.udg.mx. Editor responsable: Alicia Zúñiga Llamas. Número de la Reserva de Derechos al Uso Exclusivo del Título de la versión electrónica: 04-2009-080712102200-203, e-ISSN: 2007-1094; número de la Reserva de Derechos al Uso Exclusivo del Título de la versión impresa: 04-2009-121512273300-102, ISSN: 1665-6180, otorgados por el Instituto Nacional del Derecho de Autor. Número de Licitud de Título: 13449 y número de Licitud de contenido: 11022 de la versión impresa, ambos otorgados por la Comisión Calificadora de Publicaciones y Revistas Ilustradas de la Secretaría de Gobernación. Responsable de la última actualización de este número: Sergio Alberto Mendoza Hernández. Fecha de última actualización: 22 de marzo de 2024.