

RESUMEN

Los sistemas de voto electrónico son propensos a fallas, errores y ataques
intencionales. Un riesgo de estos sistemas es la adición o eliminación de votos
directamente en el medio de almacenamiento, usualmente una base de datos.
Existen diversos mecanismos diseñados para prevenir, detectar o mitigar las
amenazas que pudieran atentar contra la integridad de los resultados de una
elección que hace uso de medios electrónicos. Este trabajo presenta una
revisión de los diversos mecanismos de auditoría para sistemas de voto electrónico. Además, se
presenta una propuesta de generación y protección de logs en sistemas de voto electrónico
remoto, con el fin de detectar manipulaciones en los votos almacenados.

ABSTRACT

Electronic voting systems are prone to faults, errors and intentional attacks.
One risk is the addition of fake votes (stuffing) that can be carried out by an
external or internal entity. There are several audit mechanisms intended to
prevent, detect and / or mitigate any threats that could undermine the election
results. This paper presents a review and evaluation of the different
mechanisms used to conduct an election audit for electronic voting systems.
Also, an audit mechanism to detect ballot stuffing or any other manipulation
on votes is presented.

Palabras clave
Voto electrónico;
seguridad en voto
electrónico; manipulación
de votos; logs; auditoría

Keywords
Electronic voting;
electronic voting
security; ballot
manipulation; logs;
audit

Mecanismo de auditoría para detección de manipulación
de votos en sistemas de votación electrónica

Audit Mechanism for Detecting Voting

Manipulation in Electronic Voting Systems

Víctor Morales Rocha *
Universidad Autónoma de Ciudad Juárez, México

Óscar Ruiz Hernández **

Universidad Autónoma de Ciudad Juárez, México

Luis Felipe Fernández Martínez ***
Universidad Autónoma de Ciudad Juárez, México

http://dx.doi.org/10.18381/Pk.a8n14.325

Received: Junuary 6, 2018
Accepted: February 19, 2018

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

1

INTRODUCTION

An electronic voting system consists in using digital means in some of the phases of an
election, especially to cast votes. Even if it is slow, the use of electronic voting systems
is gaining acceptance mainly given the advantages such as the speed in vote counting,
the accessibility of visually disabled voters or any other type of disabilities, prevention
of errors, among others. Notwithstanding these advantages, an electronic voting system
also presents considerable challenges, especially where security is concerned which
make voters as well as other electoral participants mistrust said system.

For example, Chun-IFan and Wei-ZheSun (2008) as well as Chaum et al (2209) have
proposed mechanisms allowing voters to verify that their votes have been registered.
Estonia, the pioneer country in the use of electronic voting, has been using an electronic
voting system to hold their elections sinxce 2005. According to the description made by
Mus, Sabir Kiraz, Cenk and Sertaya (2016), Estonia’s voting mechanism consists of
three main aspects: 1) voter’s applications – a voters application VoterApp and a
verification application VerifApp -; 2) a central system: 3) Audit and recount processes.
The Estonian system through VeriApp allows verifying that the vote has been cast
according to the voter’s decision, hence, giving the electoral process greater accuracy.

Bernhard et al. (2017) allege that even though vote corroboration mechanisms are
incorporated, it is difficult to ensure accurate results. In 2016, during the United States
presidential elections, approximately three quarters of North-Americans voted by means
of voter verifiable paper ballots (VVPAT, Voter-Verified Paper Audit Trail); however,
there was no compelling evidence that the results were accurate or tamper-proof.

On the other hand, should a hacker have access to the database where the votes are
stored, he could add illegitimate votes without the individual verification mechanisms
being able to detect them. For example, this occurred in the 2012 Florida State elections,
where 2,500 illegitimate votes were added in record time.

According to Alcaraz et al. (2012), the hacking was discovered thanks to the system that
detected abnormalities in the traffic patterns since the demands were coming from a
range of IP directions from England, Ireland and India. Should the hacking not have
been detected, the number of false votes would have sufficed to affect the election
outcome. The detection of this type of hacking is not accessible to the voter, i.e., even
though every voter can verify if his vote has been registered correctly, he cannot detect
the addition of illegitimate votes.

Therefore, it is necessary to implement audit mechanisms that facilitate the detection of
fraudulent practices in electronic voting systems that go beyond individual verification.
The following sections describe and analyze the different audit techniques and
mechanisms used to conclude the election process which are designed to detect practices
that could alter the election outcome; special emphasis is made on the logging protection
mechanisms. An audit proposal for the detection of vote tampering in electronic voting
systems will be described subsequently.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

2

Post-election audit mechanisms

An audit conducted after an election aims at verifying or validating the outcome of the
election, as well as to detect if there was some type of error or tampering that could alter
said outcome. This section describes and analyzes several audit mechanisms.

Total Vote Recount

It is not surprising that the count of paper ballots in the traditional voting system presents
errors since votes are counted by humans. Hence, in case of a total recount, it is highly
probable to see a difference between the original count and the recount. Since in the
electronic voting system the counting of votes is automatic, a total recount would throw
the same results as the original count, assuming that its programming does not present
any flaws. Therefore, on the one hand, a total vote recount of paper ballots is far from
being reliable, and on the other, a total recount in the electronic voting system will not
offer any clue of possible tampering prior to the count.

Total Recount through Independent Means

If we focus on on-site electronic voting systems, an audit may be conducted through an
independent verification methodi as those described in the Voluntary Voting Systems
Guidelines (VVSG, 2005), which can be used for individual verification,ii as well as to
carry out an audit. These independent verification systems aim at storing the votes in
real time in an alternative means which will be used as backup. Therefore, it is plausible
to make a total recount of the votes registered.

However, a recount through an independent means presents a considerable disadvantage.
If the recount throws results different from those of the original count, the problem
resides in determining which of the two results is more reliable; any of these results
could have been tampered with. Therefore, this type of the audit systems presents a
challenge in choosing the registration (generated by the voting system or the independent
registration); which will be considered valid in case of differences, beyond technology,
it is perhaps a topic of electoral legislation that anticipates such situations.

Recount of a Vote Sample

Partial vote recounts represent an audit method frequently used in paper ballot electoral
systems. Polling stations are used as units subject to audit or a bigger electoral unit that
could be a precinct. The minimal unit subject to audit in in-site electronic voting systems
is usually the voting machine or, in certain cases where the system prints a paper backup,
the minimal audit unit may be the polling stating where several voting machines are
located.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

3

In most countries or states, the decision of carrying out a total or partial recount will
depend of the legislation or regulation of the electoral procedures as well as the specific
situation that would require an audit; for example, a reason for an audit would be the
slight difference in votes in favor of a candidate or another, or an objection process from
one or more of the participating parties or candidates. In some states of the United States
of America, conducting a partial recount is a standard procedure after an election. For
example, in Colorado 5% of the voting machines used must be audited; In Maryland, at
least 10% of the polling stations must go through an audit. More examples of parameters
and audit procedures can be found under Verified Voting (2017).

The advantages of a partial recount in comparison to a total one are obvious. On the one
hand, the cost of resources and time to conduct the audit is significantly less, and on the
other, the downsides of total recount are avoided, as explained above. Through a partial
recount in which the parameters to determine the sample to be audited are chosen
adequately, any tampering can be identified accurately.

The works of Stanislevic (2006), Rivest (2006), Stark (2010), Bretschneider et al.
(2012), Stark (2015) and Rivest (2017), among others, use statistic and probabilistic
models to determine a reliable sample. These models determine the percentage or
number of votes, voting machines or polling stations or any other specific unit which
must be audited in order to determine with a high level of reliability, if there has been
any tampering that might have an impact on the outcome of the election. Some variables
are generally taken into consideration such as the size of the election, the vote difference
among candidates, the size of the census in the different polling stations or voting
machines, among others.

The partial or total vote recounts will only detect the tampering or errors made in the
initial count. However, with this type of audits, it is difficult to detect the tampering of
altered or eliminated votes as such (whether paper ballots or digital records). On the
other hand, partial recounts are not feasible in remote electronic voting systems, i.e.,
those that use the Internet as means of transmission of the votes since the vote
registration is made in a centralized database or, in some cases, in several databases
distributed in different physical points; there is not a great number of units to audit.
Besides, as mentioned above, a recount through this automated means such as in the case
of remote electronic voting system will throw the same result as the original count.

Logging Protection and Verification Systems

Log auditing is a mechanism used to conduct audits in in-site as well as remote electronic
voting systems. A log is a record of an event that occurred in a digital setting by way of
a registry that associates an event with a date and time, user or process that generated it
among, other features intended to be registered. Operative systems generally have a log
registry, i. e., a registry of all the events that occurred in the computer equipment.
Furthermore, information systems or applications that have essential functions such as
the access to databases, information updating, etc., usually have a registry of specific
events of that system for auditing purposes.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

4

It is of great importance that electronic voting systems have a registry of events that
gives evidence of the actions carried out more specifically in the cases where tampering
is suspected. In a voting session for example, a registry of the voter’s authentication, of
the event of the choice of the candidate(s), the close of the session, etc., may be
generated. Likewise, it is important to have the registry of event of the database, i.e.,
every transaction carried out directly in the database without having to use the
information system.

Notwithstanding the advantages that logs generation offers, it does not cover completely
the need to have a reliable audit mechanism since a hacker that has tampered with an
election, assuming that he is a user with access privileges, could also tamper with the
logs to eliminate any evidence of tampering. Technical proposals that allow detecting,
up to a certain degree, the tampering made to the logs of a system. Next, we describe the
most relevant works for the protection of logs.

Bellare and Yee (1997) in their paper present a mechanism of log protection against
tampering. The main concept of their work is that in spite the fact that logs can be
accessed by any user or external hacker, this user or hacker cannot make any
modification without the possibility of leaving a trace. On the other hand, should the
contents be eliminated, the mechanism would allow detecting said event and would
protect the logs through MAC functions or message authentication codes which use
private codes.

This security mechanism is based on the fact that it is computationally unfeasible that a
hacker alters a message without knowing the private code and yet obtains the same value
after applying the MAC functions. In order to avoid that a hacker that has access to a
private code tampers with the logs generated up to that moment at any given time, the
private code may change through time. The private code ki, at a given time ti, is obtain
by applying a hash function to the ki-1 code that previously belonged to ti-1. Once the ti
time begins, the ki-1code is eliminated. Therefore, if the hacker obtains a private ki code,
he will not be able to know or deduce a private ki code for j<i. Hence, the logs generated
before compromising the private code cannot be modified without being detected.

This mechanism main drawback is the administration of private codes which becomes
more complex as the number of codes increases. In order to verify the integrity of the
logs, all the private codes generated to protect said logs must be used. Besides, only the
attacks against the modification of logs are being considered but not their elimination.

Schneier and Kelsey (1998) propose as another protection mechanism that the logs be
backed up after a certain time or when a certain number of registries have been obtained.
This mechanism considers three components; an unsecured machine, a secured machine
and a verifier. Logs are generated in an unsecured machine and their backup is performed
in a secured machine. It is assumed that there is a connection between the two machines
through a data network. A combination of hash functions, digital signatures and
cryptography of public and private code are used. As with the mechanism previously
described, this mechanism focuses on the protection of logs which are generated before
being compromised.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

5

Riera and Puiggali (2004) and for Sandler, Derr, Crosby and Wallach (2008) describe
other proposals of logs protection oriented mainly to electronic voting systems. Riera
and Puiggali describe a protocol of logs protection for remote electronic voting systems.
The idea consists in calculating a hash value of every log generated in real time.
Furthermore, for each number of logs accumulated, or for each specific period a digital
signature is applied, then logs are chained as follows:

…

Li = H (li│Li-1)

Li+1 = H (li+1│Li)

Li+2 = H (li+2│Li+1)

Li+3 = H (li+3│Li+2)

…

Where l is a log and L is the result of the hash value of the chaining of l with the previous
L. Every time a bi block is formed, a digital signature of said block is carried out:

Sigi = [H (bi│sigi-1)]Sk

Where Sk is the private code of the computer equipment or server that signs the logs.
The corresponding public code is used to verify the integrity of said logs. The object of
establishing an integrity chain between logs is to detect if a hacker modifies the logs, he
will be detected when performing the verification of signatures. Likewise, the
elimination of a log will be detected when performing the verification of the block to
which it pertains.

It is important to highlight that when the quantity of events is very large, it is extremely
complex to not only conduct an analysis of the logs registries but it become difficult to
detect tampering. Conducting a log analysis requires tools that automate said analysis,
especially when there are large quantities of registries.

Sandler, Derr, Crosby and Wallach (2008) describe a tool called Querifier that carries
out the log analysis in real time which reduces the complexity of analyzing a large
quantity of registries. This tool uses definite rules with predicate logic that define all the
possible events within a system and the most logical order in which said events must
occur. For example, in an electronic voting system, a rule

could be that the “registered vote” event should be preceded by the “authenticated voter”
event, in such a way that if the rule is not met, then it would detect some corruption of
the registries of events. It also considers if a chain of integrity performed through hash
functions has been broken, hence, knowing if the tampering of a log has occurred.

After conducting an analysis of the mechanisms previously described to conduct audits
in remote electronic voting systems, it was noted that these schemes base the detection
of tampering mainly on the analysis of the logs generated. According to the schemes

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

6

described, the difficulty lies not only on the protection of logs, but rather on the
verification of the integrity, which is a task performed by the auditors, that, without the
help of log analysis, would be impossible to perform.

Morales (2009)’proposal describes a specific mechanism to detect the adding of votes
(attack known in literature as “stuffing”) by an internal hacker, i.e., a hacker with access
privileges to elements of the election or at least to the database where votes are stored.
Said proposal describes a technique for the protection of stored votes which allows
conducting simpler audits in comparison to the logs analysis.

This technique allows the generation of blocks or lots of votes that are backed up in real
time. As soon as these blocks of lots of votes are received in a server, the size of every
lot is defined, as well as the amount of votes that will form the lot. After completion of
the lot, the votes are chained and signed digitally by an authority or several authorities
that possess a Sk code as follows:

L = {V1│V2 │V3│…│Vn}Sk

Every lot of votes is stored in a backup server or in some means of removable storage to
be kept in a secure location. Tampering of any of the lots can be detected through digital
signature. Moreover, in order to offset a possible hacking through which illegitimate lots
could be added and including signing them should the hacker have a private code, an
integrity chain of lots is formed as soon as these are generated. To form the chain of
integrity, a hash value of the previous lot chain is calculated already signed with the
current lot and also signed as follows:

L’1 = H [L1]

L’2 = H [L’1│L2]

…

L’n = H [L’n-1│Ln]

A sole vote identifier is necessary for auditing purposes to tie the votes contained in the
lots with the votes stored in the database. The generation of the sole vote identifier occurs
during a vote authentication session. Should illegitimate votes be added in the database,
which would be done without a valid voter session. These votes would not have a valid
identifier. To conduct an audit, a series of validations comparing the votes included in
the vote count with the votes contained in the backup lots must be made. Figure 1 shows
the scheme in a general manner:

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

7

Servidor de
votación

Servidor de
escrutinio

Medio de
almacenamiento

de lotes

Fase de
votación

Fase de
consolidación

Lote 1

Lote 2

Lote n

.

.

.

RESULTADOS

VOTOS

Auditoria
Medio de

almacenamiento
de lotes

RESULTADOS
Comparaciones

Figure 1. Audit Scheme.
Source: Morales, 2009.

The validations performed in the audit are as follows:

• Verification of the lots integrity. The lots integrity chain and the digital
signature of each one of them are revised.

• Verification of the number of votes. A comparison between the quantity of
votes included in the vote count and the number of votes contained in the
backup lots is made. If the sum of the votes included in the vote count is greater
than the amount of votes contained in the lots, it is then possible to know how
many illegitimate votes have been added, even though the following step has
to be performed to detect which of the votes are illegitimate.

• Verification of the vote identifier. Each vote included in the count should also
be found in one of the lots. This validation is obtained by verifying the sole
vote identifiers. The votes in a count which identifier does not correspond to
the votes registered in the backup lots may be classified as illegitimate votes.

After these validations have been performed in the auditing process, the adding of votes
or vote tampering stored in the original database may be verified. This mechanism also
can detect if the votes have been tampered with.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

8

Auditing Proposal to Detect Votes Tampering: Medusa

Based on Morales (2009)’s description which was analyzed in the previous section, a
mechanism that incorporates some improvements for the detection of the addition of
illegitimate votes and the elimination of illegitimate votes has been proposed. This
mechanism is called Medusa and, in general, the improvements are: 1) the use of hash
to form the chain of integrity instead of the digital signature; and 2) the identification of
the last lot to corroborate its existence and integrity. The Medusa operation will be
described in detail in the following paragraphs.

As with the previous proposal, backup vote lots are being generated as they are received
by the voting server. A vote lot is made up of a certain quantity of votes received that
have been linked. A hash function is applied and they are signed by an authority or
several authorities with the Sk code, as shown here below:

L = {V1│V2 │V3│…│Vn} │ (H{V1│V2 │V3│…│Vn})Sk

For example, if it was determined that the lots would contain 100 votes, they would be
formed as follows:

L1: {V1, … , V100} │ (H{V1, … , V100})Sk

L2: {V101, … , V200} │ (H{V101, … , V200})Sk

…

Ln: {V100n-99, … , V100n} │ (H{V100n-99, … , V100n})Sk

The signed vote lots are stored in a server or a means other than a voting server. The
implementation of a digital signature ensures that any tampering of the lots would be
detected, notwithstanding the possibility that if the hacker has access to a private code
he may add or eliminate lots without being detected. If the hacking occurs during an
audit, the votes counted originally will not correspond to the votes backed-up in the lots.

To prevent these hackings, an integrity chain is formed between the votes and the lots as
they are being generated. This integrity chain is made by calculating a hash of the linking
of the previous lot signed with the first vote of the current lot, and between the votes by
calculating a hash to the linking of the previous vote with the current vote.

…

Vi

V’i = H(Vi │Li-1)

Vi+1

V’i+1 = H(Vi+1│Vi)

Vi+2

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

9

V’i+2 = H(Vi+2│Vi+1)

Vi+3

V’i+3 = H(Vi+3 │Vi+2)

…

Where:

• Li-1 is the lot containing votes, hashes and signature corresponding to the previous
lot.

• V is an individual log.

• V’ is the result of calculating a hash value to the chain of the current vote with the
previous vote or lot, i.e., Vi with Vi-1.

As mentioned above, one of the improvements included in Medusa is that the integrity
chain does not need to use the linking of the signature to be formed. On the other hand,
it uses the calculation of a hash of the chain of the first vote and of the previous lot.
When implementing the foregoing, the following advantages are obtained:

• Less computer power is required to create and verify the integrity chain since a
hash function is applied to the link instead of applying a digital signature that
requires more processing.

• It is not necessary to calculate the digital signature of every lot to verify its
integrity, since it is going to be calculated in those lots where the integrity chain
is broken. For example, if we have L1, L2, L3, L4 and L5, and the integrity chain
breaks at L3, the integrity can be verified through L2 and L3 digital signature to
try to see if there was any modification of if any lot was eliminated.

Likewise, this mechanism proposal considers the possibility of detecting when the last
lot or lots were eliminated. For example, if we have five lots L1, L2, L3, L4 and L5, and
L5 is eliminated, the integrity chain does not break and the elimination cannot be
detected. Another case would be to want to eliminate L3 without leaving any trace;
hence, we simply eliminate L3, L4 and L5, and the elimination cannot be detected.

A proposal in trying to mitigate this risk is to identify the last lot, thus offering the
possibility to detect if the lot was eliminated or not. To identify the last lost, it has been
proposed to make an extra signature, i.e., besides the one made to ensure the integrity of
the lot, an additional signature is made to verify that it is the last lot. That is, the chain
of the penultimate lot is signed with the last in the following manner:

Sig n = {H(Ln-1 | Ln)}Sk

Where Sk is the private code of an authority or several authorities of the election in
charge of signing the lots digitally. The corresponding public code will be used to verify
the integrity and ensure that the last lot exists where it has been stored. It should also be

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

10

ensured that only the last lot is marked so that when it is identified, it is necessary to
remove the mark of the penultimate lot in order to avoid any confusion.

As with the mechanism proposed by Morales (2009), when conducting an audit, it is
necessary that the votes contain a sole identifier to establish a relation between the votes
contained in the lots and the votes stores in the voting server, and thus, being able to
compare them in an audit. The vote identifier is generated in the voting phase and may
be composed of a set of alphanumeric characters.

The sole identifier may also be used to integrate the backup lots according to the electoral
unit to which they belong, for example, a municipality, electoral district, state, etc. For
example, if an electoral district is assigned identifier “001”, the votes issued by the voters
of said district may be identified as “001” besides another set of unique characters. This
is used to detect tampering directed to a specific geographic area, in order to benefit a
specific candidate.

As with the previous mechanism, the generation of a vote identifier can be carried out
only until the voter has been authenticated during a voting session. When implementing
the foregoing, it is sure that if any invalid votes were added to the database, they would
not have a valid identifier. Likewise, if votes were eliminated, it would be possible to
identify which ones were eliminated. In both cases, the votes may be identified by
introducing a cross between the backup lots and the database.

Consideration must be given to the fact that a hacker can add illegitimate votes in three
phases of the election process: before starting the voting process, during the voting phase
or, once it is over. On the other hand, the elimination of legitimate votes can only occur
in two periods: in the voting phase and once that phase has ended. The addition of votes
before starting the voting process can be detected relatively easily, by means of
verifications. For example, before any voting starts, it should be verified if the database
where the votes will be stored is blank. The addition and elimination of votes in the
voting phase itself and even when it has ended can be detected through the proposed
audit mechanism as it can be seen below.

Should an audit of the voting results needed be carried out once the vote counting is
completed, then, some validations can be made by comparing the votes included in the
original count with the votes stored in the backup lots, which are protected against
tampering. The audit makes use of the proposed mechanism, and is carried out as
follows:

1) As for the previous mechanism, the integrity of the lots is verified. Figure 2
shows an example of the validations carried out to detect if a vote has been
modified. The chain of integrity of the lots and the digital signature where the
chain has broken are verified in order to determine:

• If the first lot or a set of the first lots were eliminated: if the integrity chain
is broken in the first lot and if by means of the digital signature it has
been verified that the first lot has not been modified, then, it can be
determined that a lot or a set of starting lots has been eliminated.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

11

• If the last lot or a set of the final lots were eliminated: since the last lot was
identified, then, the digital signature can be calculated to corroborate
that said last lot exists and has not been modified.

• If a lot or set of intermediate lots were eliminated: if it has been verified by
means of the digital signature that the previous and current lots did not
undergo any modification at the breaking point of the integrity chain,
then, it can be determined that some lot or set of lots were eliminated.

• If a vote was modified or eliminated: if it has been verified by means of the
digital signature that the chain of integrity was broken and a lot was
modified, then, it can be determined that a vote was modified or
eliminated by calculating the hash of the link of the current vote with
the previous vote.

• It can be specified in which lots the chain of integrity was broken: it can be
verified if the chain of integrity is preserved or broken by calculating
the hash of the link of the first vote with the previous lot and thus,
determine at which point or points it breaks.

• It can be specified in which votes the chain of integrity of each lot is broken:
it can be verified if the chain of integrity is preserved or broken by
calculating the hash of the link of the current vote with the previous vote
and thus, determine at what point or points it breaks.

Figure 2. Example of Integrity Verification.
Source: Developed by the author.

L1 = {V1, … , V100} │ (H{V1, … , V100})Sk
L2 = {V101, … , V200} │ (H{V101, … , V200})Sk
L3 = {V201, … , V300} │ (H{V201, … , V300})Sk
L4 = {V301, … , V400} │ (H{V301, … , V400})Sk
L5 = {V401, … , V500} │ (H{V401, … , V500})Sk

…
Ln

L’1 = H (V1 │Base)
L’2 = H (V101 │L1)
L’3 = H (V201 │L2)
L’4 = H (V301 │L3)
L’5 = H (V401 │L4)

…
Ln

Backup lots Verification of the

Sig L1 = (H{V1│…│V100})Sk
 Sig L2 = (H{V101│…│V200})Sk
Sig L3 = (H{V201│…│V300})Sk

Batch integrity check

V’101 = H(V101 │L1)
 V’102 = H(V102│V101)
 V’103 = H(V103│V102)
 V’104 = H(V104 │V103)
V’105 = H(V105 │V104)

…
V’200 = H(V200 │V109)

Verification of vote integrity

Sig n = {H(Ln-1 | Ln)}Sk
Verification of last batch

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

12

2) The number of votes obtained from the count is compared with the number of
votes in the backup lots. If the number of votes in the count is different from
the votes contained in the lots, it can be deduced that illegitimate votes have
been added, or legitimate votes have been eliminated. To know which votes
were added or eliminated, the next step must be followed.

3) Since all votes have an identifier, it can be verified that each vote included in
the count is also in one of the lots. Votes that are not in the backup lots are
classified as illegitimate votes. Counting votes, whose identifiers are not to be
found in any of the backup lots are classified as deleted votes.

Through these validations you can obtain evidence of whether illegitimate votes have
been added or legitimate votes have been eliminated from the original database, and even
such votes can be identified as false. If necessary, a new count of votes can be carried
out.

An audit can throw evidence that may suggest that tampering has occurred, and that it
possibly requires a deeper analysis than that provided by the proposed mechanism. If
that were the case, then some mechanisms allowing logs analysis may be implemented,
as explained above.

Medusa Prototype

The proposed mechanism is focused on the detection of addition and/or elimination of
illegitimate votes; however, it can also protect from and detect the tampering of the logs
that generated some information systems that handle sensitive information. The National
Laboratory of Information Technologies of the Autonomous University of Ciudad
Juárez developed a prototype based on the Medusa mechanism for the generation and
protection of logs, as well as the verification of the integrity of the latter.

The prototype was part of the ERRS project (Elections Results Reliable Sampling),
aiming at the verification of electoral results. This prototype was developed in
JavaScript and used Node.js as the execution setting. The prototype was performed as
follows:

1) When generating a new log, a text file is also generated for each minute of the
system operation, for example "201708170212.txt", where the logs will be
stored -see Figure 3-. When generating a log, a hash value of the link of the log
generated with the previous log is calculated in real time, this with the object of
generating an integrity chain between the logs; the log files have the structure
shown in the Figure 4:

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

13

Figure 3. Log files.

Source: Developed by the author.

Figure 4. Files Structure.
Source: Developed by the author.

2) When a new file is created, the previous file is signed using a digital signature

algorithm to ensure the integrity of these during storage and path, as they are

sent to an external server for backup and assurance. In addition to ensuring the

integrity of each file also between the files, an integrity chain is formed by

calculating a hash of the concatenation of the first log with the previous log file.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

14

The chain of integrity is implemented with the purpose of detecting the breaking

point, that is, where modifications were presented. In addition to the signature

to protect the integrity of the file, a second signature is applied to mark the file

as the last one. The structure of a signed file is shown in figure 5.

3) Once the file is signed it is sent to another server for backup. The backup server

is always waiting to receive the log files. Upon receiving them, it verifies if the

file has not undergone any modification during its journey. This validation is

done through the verification of the digital signature, see figure 6.

Figure 5. Signed File.
Source: Developed by the author.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

15

Figure 6. Backup Server.
Source: Developed by the author.

4) Once the log files are received, their integrity can be verified at any time. The
verification consists in verifying the chain of integrity that is formed between each log
file, and if the chain is preserved, a message is shown indicating that the files have not
been modified and that the chain of integrity is preserved, see Figure 7. If the chain has
a breakpoint, the integrity of the files is then verified at the breaking point of the chain
to inquire if there was any modification or if a log or a log file was deleted. In any of
these cases, a message is displayed indicating in which file the chain of integrity was
broken and, if possible, the reason of the break; see Figure 8.

Figure 7. Successful Verification.
Source: Developed by the author.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

16

Figure 8. Failed Verification.
Source: Developed by the author.

As explained earlier, the prototype of the Medusa mechanism has a series of verifications
that allows discovering log tampering. As seen in the implementation example, in the
same way logs can be protected, so can larger units of digital information such as votes
or any other sensitive information.

Conclusions

In this paper we have analyzed the methods, techniques and auditing mechanisms that
can be applied to the different voting systems, starting with the classic methods of total
and partial recounts by choosing a sample. It has also been described how independent
verification systems applied to electronic voting facilitate auditing; however, this is only
for on-site electronic voting systems.

On the other hand, there are more adequate techniques to conduct audits of remote
electronic voting systems. Some of them are based on the analysis of logs or records of
events generated during the voting process. However, the management and analysis of
logs presents some important challenges given the large number of logs that can be
generated in a system. Automatic log analysis tools, such as the querifier, facilitate the
auditor's task in detecting possible tampering.

This paper describes a mechanism that allows detecting, by means of an audit, votes that
were added, eliminated or tampered with in an illegitimate manner. Through this
mechanism it is possible to detect with great accuracy where along the log chain did the
tampering occurred. This gives evidence not only that tampering occurred, but it also
deduces in what sense the tampering detected has occurred. Therefore, this proposal
contributes to the auditing of remote electronic voting systems; however, the same
mechanism can be applied to other types of systems as shown in the example of the
implementation of the Medusa mechanism where the logs of a system of information of
electoral outcome are protected.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

17

Recognition

The authors acknowledge the support of CONACYT, as this paper is supported in part
by the following projects: The National Laboratory of Information Technologies -
LANTI UACJ headquarters, and Elections Results Reliable Sample (ERRS).

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

18

REFERENCES

Alcaraz, J., Aragon, A., Brienen, R., Fiallo, L., Friguls, A. & Gomez, J. (2012). Final
report of the Miami-Dade County grand jury: Report 2012. Miami Dade County
grand jury, Miami, USA.

Adida, B. (2006). Helios: Web-based Open-Audit Voting. 17th USENIX Security
Simposium. Vancouver, Canada.

Bellare, M. & Yee, B. (1997). Forward integrity for secure audit logs. University of
California at San Diego, Dept. of Computer Science & Engineering.

Bernhard, M., Benaloh, J., Halderman, J. A., Rivest, R. L., A. Ryan, P. Y., Stark, P. B.,
. . . Wallach, D. S. (2017). Public Evidence from Secret Ballots. 2nd Joint
International Conference on Electronic Voting E-VOTE-ID 2017, (p. 419).
Lochau/Bregenz.

Bretschneider, J., Flaherty, S., Goodman, S., Halvorson, M., Jinston, R. & Linderman,
M. (2012). Risk-Limiting Post-Election Audits: Why and How. California, USA:
Risk-Limiting Audits Working Group.

Chaum, D., Essex, A., Carback, R., Clark, J., Popuveniuc, S., Sherman, A. & Vora, P.
(Mayo de 2009). Scantegrity: End-to-End Voter-Verifiable Optical- Scan
Voting. IEEE Transactions on Information Forensics and Security , 4 (4), 611-
627.

Chun-IFan & Wei-ZheSun (November 2008). An efficient multi-receipt mechanism for
uncoercible anonymous electronic voting. Mathematical and Computer
Modelling, 48, 1611-1627.

Morales, V. (2009). Seguridad en los Procesos de Voto Electrónico Remoto. Barcelona,
España: Universidad Politecnica de Cataluña.

Mus, K., Sabir Kiraz, M., Cenk, M. & Sertkaya, I. (December 2016). Estonian Voting
Verification Mechanism Revisited. CoRR, abs/1612.00668.

Riera, A. & Puiggali, J. (2004). Pnyx Software Requirements Document. Scytl.

Rivest, R. (November 2006). Audit On Estimating the Size of a Statistical. Recuperado
de MIT Computer Science & Artificial Intelligence Lab:
http://people.csail.mit.edu/rivest/Rivest-
OnEstimatingTheSizeOfAStatisticalAudit.pdf

Rivest, R. (January 2017). ClipAudit: A Simple Risk-Limiting Post-Election Audit.
Recupedado de MIT Computer Science & Artificial Intelligence Lab:
https://people.csail.mit.edu/rivest/pubs/Riv17b.pdf

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

19

Schneier, B. & Kelsey, J. (1998). Cryptographic Support for Secure Logs on Untrusted
Machines. 7th Conference on USENIX Security Simposium. San Antonio, TX:
USA.

Sandler, D., Derr, K., Crosby, S. & Wallach, D. (2008). Finding the Evidence in Tamper-
evident Logs. 3rd International Workshop on Systematic Approaches to Digital
Forensics Engineering.

Stanislevic, H. (2006). Random auditing of e-voting systems: How much is enough?
National Coalition for Election Integrity, E-Voter Education Project.

Stark, P. B. (2008). Conservative Statistical Post-Election Audits. The Annals of Applied
Statistics, 2 (2), 550-581.

Stark, P. B. (March 2010). Why small audit batches are more efficient: two heuristic
explanations. Recuperado de University of California, Berkeley - Department
of Statistics:
https://www.stat.berkeley.edu/~stark/Preprints/smallBatchHeuristics10.htm

Stark, P. B. (2015). Tools for comparison risk-limiting election audits. Recuperado de
University of California:
https://www.stat.berkeley.edu/~stark/Vote/auditTools.htm

Verified Voting (2017). State Audit Laws Searchable Database. Recuperado de State
Audit Laws Searchable Database: https://www.verifiedvoting.org/state-audit-
laws/

VVSG (December 2005). Election Assistance Commision. Recuperado de Election
Assistance Commision:
https://www.eac.gov/assets/1/28/VVSG.1.0_Volume_1.PDF

Yasinsac, A. & Bishop, M. (Mayo de 2008). The Dynamics of Counting and Recounting
Votes. IEEE Security and Privacy, 6 (3), 22-29.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

20

i These are classified as direct verification systems, separate process systems, token systems, or
end-to-end encryption verification systems.
ii Individual verification refers to the possibility that each voter has to verify that their vote was
recorded correctly.

* Víctor Morales Rocha has a doctorate degree and works at the Institute of Engineering and Technology of
the Autonomous University of Ciudad Juárez (UACJ). Coordinator of the National Laboratory of Information
Technologies, UACJ campus.
** Oscar Ruiz Hernández is a student of the Master's Degree in Applied Computing from the Autonomous
University of Ciudad Juárez.
*** Luis Felipe Fernández Martínez has a master's degree and works at the Institute of Engineering and
Technology of the Autonomous University of Ciudad Juárez. Coordinator of the Unit of Knowledge
Engineering and Software Engineering, of the UACJ.

 Paakat, Revista de Tecnología y Sociedad, Year 8, no. 14 (2018) ● March-August 2018
eISSN 2007-3607 ● Universidad de Guadalajara

21

