

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 1

ABSTRACT

The aim of this research is to compare individual, pair and Mob programming in university
programming courses taking into account the perceptions of the students. 24 students
participated in a course of Intermediate programming with Visual Basic. Net. They worked
with the three modalities in the development of software projects during regular class
sessions. A sequential explanatory mixed research design was used. For the quantitative
component, questionnaires were administered. For the qualitative section, interviews were
conducted. The results showed that students prefer pair programming because they
perceive it as a midpoint between programming alone and doing it with a large group. Solo
programming may cause stress and intellectual blockage, and doing so with too many
people at the same time may generate distraction and imbalance of work among the
participants. A limitation of the study is the sample size. However, the work makes
quantitative and qualitative contributions in an area of knowledge little explored in formal
literature. The findings suggest promoting work in pairs in university programming
courses, as it is easily implemented with few resources and good results.

RESUMEN
El objetivo de esta investigación fue comparar la programación individual, por pares y
colectiva a través de las percepciones de 24 estudiantes del curso universitario
Programación intermedia con Visual Basic.Net. Los participantes fueron expuestos a las
tres modalidades de trabajo en el desarrollo de proyectos de software durante sesiones
regulares de clase. El diseño de investigación fue mixto explicativo secuencial. Para el
componente cuantitativo se aplicaron cuestionarios, y para el apartado cualitativo se
realizaron entrevistas. Los resultados mostraron que los alumnos prefieren la
programación por pares porque la perciben como un punto medio entre no programar con
nadie y hacerlo con un grupo numeroso. Programar de manera individual puede
provocarles estrés y bloqueo intelectual, mientras que hacerlo con demasiadas personas al
mismo tiempo les genera distracción y desbalance de trabajo. Una limitación del estudio es
el tamaño de la muestra; sin embargo, hace aportaciones cuantitativas y cualitativas a un
área de conocimiento poco explorada en la literatura formal. Los hallazgos sugieren
promover el trabajo por parejas en los cursos universitarios de programación, pues se
implementa con facilidad, con pocos recursos y buenos resultados.

Palabras clave
Desarrollo de software;
educación
universitaria;
enseñanza
de la tecnología;
estrategias de
enseñanza;
programación

Keywords
Software development;
university education;
teaching
technology; teaching
strategies; programming

Solo, pair or Mob programming:
Which should be used in university?

Programación individual, por pares o colectiva:
 ¿cuál conviene utilizar en la universidad?

Ramón Ventura Roque Hernández*
Sergio Armando Guerra Moya**

Adán López Mendoza***

* PhD in Telematics Engineering, University of Vigo, Spain. PhD in Education, José Martí University
of Latin America, Mexico. Research professor at Autonomous University of Tamaulipas, Mexico.
ORCID: https://orcid.org/0000-0001-9727-2608
** PhD in Philosophy with a specialization in Administration Autonomous University of Nuevo
Leon, Mexico. Research professor at Autonomous University of Nuevo Leon, Mexico. ORCID:
https://orcid.org/0000-0002-3369-8527
*** PhD in International Education, Autonomous University of Tamaulipas, Mexico. Research
professor at Autonomous University of Tamaulipas, Mexico. ORCID: https://orcid.org/0000-0003-
4801-640X

Received: September 26, 2019
Accepted: December 11, 2019

Online Published:
March 30, 2020

http://dx.doi.org/10.32870/Ap.v12n1.1791

https://orcid.org/0000-0001-9727-2608
https://orcid.org/0000-0002-3369-8527
https://orcid.org/0000-0003-4801-640X
https://orcid.org/0000-0003-4801-640X

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 2

INTRODUCTION

Software development is an activity that is to be performed
supported by a methodological approach that would facilitate the
organization of tasks, collaborative work and understanding of the
requirements of the applications. There is no universally recognized
approach to be the best for every setting, therefore the different ways
to work ought to be evaluated to choose the most appropriate one in
accordance with the needs of each project and team of persons.

In college programming courses it is customary to work individually
to carry out exercises and class practice (Umapathy & Ritzhaupt,
2017). This is due to the physical setting of computer laboratories
and the number of students who take these subjects. In some cases,
the students share a single computer because of the lack of computer
equipment availability or because they do joint tasks; however, it is
easy to see, in these cases, that one person conducts the process
indefinitely, while the other person watches, poorly makes an
opinion, or adopts a passive role.

Karthiekheyan, Ahmed & Jayalakshmi (2018) explain that pair
programing is a practice consisting of two persons who work in the
same computer equipment and who exchange the keyboard and the
mouse in regular intervals. Both persons also exchange the roles of
leader-follower, or driver-navigator, between themselves, as
expressed in pair programming terminology. On the other hand,
Zuill (2015) defines collective programming (Mob) as three or more
persons working on the same computer equipment, space and
project. This type of work requires image amplification from the
computer, which may be done on a large size display or on a
projector, as described by the author.

Although the Mob programming term was first used at the
beginning of the past decade, the study and application thereof are
recent (Balijepally, Chaudhry & Sridhar, 2017). Some companies
have employed this approach with good results; however, if the
bibliography on this subject is scarce to the world of business, it is
even more scarce for the educational setting. These two
environments are different; for example, there is more freedom at
companies to adapt workspaces as required. At universities, on the
contrary, the traditional facilities of computer laboratories for
teaching are used by many students; they are furthermore limited to
a fixed space, which could make the implementation of Mob
programming difficult as a learning strategy.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 3

If individual work may be done in college pair programming courses,
or under the Mob mode, the following questions arise: Which
approach is most appropriate? What is the perception of students
with respect to these three ways of work? What are the differences
between these modes? In this article we present our experience upon
the application of these three approaches in a group of college
students with the purpose of comparing their perceptions and of
providing answers to these questions. We hypothesized that there
are differences among the perceptions of students about the three
modes, and that collaborative approaches (pair and Mob) are
preferred over individual programming.

This work is organized in four sections: the first one contains
background information previously reported in bibliography, the
second one describes the methodology steering our research, the
third one shares the results and discussion, and the fourth one
presents the conclusions, recommendations and future works.

BACKGROUND INFORMATION

Pair programming

Pair programming or by pairs was proposed as part of the agile
approach titled “extreme programming” at the end of the 90s; since
then, its popularity has increased and its study has been done from
different angles of interest. Aottiwerch & Kokaew (2018), for
example, consider that every pair of programmers ought to be
carefully chosen for an effective job; for this reason, al algorithm was
created to select the best partner from a person based on the
following criteria: attitudes, programming competences and
learning behaviors.

To the above, Poonam & Yasser (2018) add that human factors and
personality characteristics also are important for successful projects
when programming by pairs. During their research, they found that
technical aspects of projects have been more extensively studied
than human factors. As an experiment was conducted, the authors
found a significant relationship among the personalities of
programmers, their job location, whether local or remote, and the
performance of the partners.

Another less studied aspect or pair programming, is the use of
Integrated Development Environments (IDE). Gomez & Aguileta

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 4

(2018) made contributions to this area doing a research the results
of which specify that, in simple projects, using IDE increases the
number of defects to single programmers and pairs; however, in
more complicated programs, partners have significantly less defects
with IDE. These authors conclude that students ought to do their
initial practice with a simple word processor and a compiler,
however, they ought to incorporate the use of an IDE, especially if
they work within the pair mode.

Sadath, Karim & Gill (2018) emphasize on the gap existing between
teaching and software engineering in the classroom and in the
current reality of the world of business. For this reason, they center
their research in college education and propose a work framework
gathering the best practices which have proven to be effective in the
industry. The work framework includes pair programming as a
fundamental practice to enhance the knowledge shared among
participants.

Smith, Giuliano & DeOrio (2018) agree on the relevance of doing
pair work in engineering and programming college studies, as this
prepares students for real world activities that are not frequently
done alone. These authors performed a research to determine the
effect of pair programming in the academic performance of students
in the long term. Their results show that this way of programming
had a positive effect: people who work in pairs in introductory
courses later obtained the highest grades in more advanced studies.

Lee et al. (2016) carried out a research to relate study times and
academic performance of students who do pair programming. They
found that a better performance of students is obtained who are at
the risk of failing with more hours of independent study before pair
programming in the lab. They conclude that individual training
along with pair programing is beneficial to prevent low performance
in these courses.

In accordance with Du et al. (2015), pair programming is a useful
tool to improve communication among the students of each pair, as
well as the understanding of academic topics, regardless of the
grades of each member. These authors also found that pair work
triggers new ideas. For their research, they used the C language with
topics of control flow, functions, pointers and files. Their evaluations
were based on interviews to students and on teachers’ perception.
On the other hand, Saltz & Shamshurin (2017) highlight the positive
results of pair programming as it is applied to analyze data with R.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 5

These authors performed a research with students organized by
pairs and saw that the participants improved their communication
levels; in addition, they wrote a better code in less time and obtained
good perceptions on the results they obtained.

Swamidurai & Umphress (2015), on the other hand, argue that
software development does not always have to be in the company of
another person; therefore, they propose an approached called
“inverted pair programing”, which consists of two programmers
who start by designing solutions together, but they separate during
the implementation and then they gather together again to do tests.
These authors validated their proposal by means of two
experiments, which resulted in the fact that traditional pair
programming may be costly and that inverted pair programming
achieves greater or similar quality levels at a lower cost.

To Meyer (2018), pair programming is an interesting practice that
ought to be used from time to time, especially in more complicated
sections of the software under development. He says that there is no
reason to impose it as a sole mode to create software and
recommends that this should not be confused with tutorship or
accompaniment, which is a different activity. In this sense, Meyer
explains that agile methods are not a panacea, for there still are
disadvantages and challenges to be faced. Likewise, he highlights the
importance of actual measures and evaluations of these approaches
so that we will not exaggerate or create false expectations.

Mob Programming

Mob programming, also known as mobbing, is now seen with
interest in the development of software focused on businesses. Zuill
(2015) is one of the pioneers who made known details on this
approach, which he refers to as “a step beyond pair programming”.
Zuill, based on his own experience, proposes principles for Mob
programming to work successfully, such as treating others with
kindness, consideration and respect; applying driver-navigator
roles, where the driver used the keyboard and the navigator
expresses his/her idea and guides him/her to implement it in the
program; rotating driver-navigator roles every fifteen minutes;
using the telephone and email as if this was a single person, which
implies having a single email account and to answer calls on the
speaker in a single telephone extension. Similarly, he recommends
the organization of retrospective meetings to reflect on what has
been done well and on what could be improved.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 6

Pyhäjärvi & Falco (2018), creators of the first material in a book
format completely dedicated to Mob programming, explain that the
person who is using the keyboard ought to not think, he/she should
only let ideas, thoughts and reflections of the rest of the team to flow
to capture and implement them in the task which is executed. Thus,
people who are not using the keyboard also assume an active
position.

Currently, people who have used Mob programming in business
environments say that, although they went through adaptation
stages, they have obtained benefits for working as teams of more
than three persons; however, it is still not clear what they are, how
they are obtained and reached, for the contributions mainly come
from experiential narratives that are difficult to quantify.

Schartman (2014) says that his software development team adopted
the Mob mode after being encouraged by a chat where it was said
that he could be up to ten times more productive with this work
approach. Notwithstanding, they were barely equally productive as
they were with other approaches that were used before. Schartman
makes a reflection on the importance of having specific measures on
Mob programming so that expectations are germane to reality.

In the other hand, Lilienthal (2017) emphasizes on the lack of
scientific experiments aimed to know learn about the usefulness of
Mob programming. Balijepally et al. (2017) agree that, currently,
there barely is any initial evidence from anyone who has started
using Mob programming, and that this requires an empirical
validation both from software engineers and academicians. On the
other hand, they identify, through the work of Zuill (2015) the
following benefits of Mob programming: it reduces administrative
processes, it eliminates communication barriers of participants, it
diminishes the number of decisions to be made for future situations;
in addition, there is less waste, less quick batches in the code, less
external interruptions, less policies, less extensive meetings, more
continuous learning, more satisfaction of members of the team and
better software quality. The following are possible risks that may
affect the manner in which the team works: organizational culture,
scarce acquaintance with the agile development, dominant
personality, as well as physical and mental fatigue of the members.

Buchan & Pearl (2018) describe their experience in a software
development team who worked with Mob programming for one
month to create a product for the financial services sector. They

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 7

found the following benefits in this mode: tasks were completed
faster, the team had a better sense of belonging towards the code,
the style of the design and codification was more consistent, using
tools was more productive, people got to know the system they
worked on more widely, trust in the code increased, the new
members incorporated faster, and the estimated time required for
the tasks was more accurate.

Buchan & Pearl (2018) reported the following risks and challenges
of Mob programming: people might be reluctant to accept this work
approach, they may also be encouraged at the beginning and then
lose interest, the code is slowly generated when people begin
programming in Mob, interpersonal relations are increased and
team capacities may be altered to complete the job, some people
become isolated and they find it difficult to communicate with their
teammates, getting physical facilities and the necessary equipment
might pose a problem.

Wilson (2015) reports the experience of his team when working with
Mob programming and explains that the approach may be adapted
to project needs. They, for example, evolved from a purely Mob
manner of work to a hybrid one involving pair programming; they
used the Mob approach to amend the code of critical importance,
they found that not all the tasks demanded the attention of the whole
team and realized that, to them, this approach was more useful in
settings where the solution is unknown than in setting where the
solution is known, but demands more time to implement it.

Kerney (2015) describes how, in spite of his strong personality, he
was able to interact and work with his partners in Mob programming
and, in doing so on a daily basis, some features of their character
changed in a positive manner; for example, their listening capacity
improved and their consideration for each other increased.

Arsenovski (2016) speaks of his experience in the development of
collective software in an inherited project with many defects. He
calls his particular work approach ‘swarm’, a term which refers to
several programmers who cooperate in a common project.
Arsenovski says that they used several patterns such as ‘branch out’,
where a participant withdraws from the team, with the purpose of
resolving a problem that affects the whole team and then he returns.
On the other hand, Lilienthal (2017) makes a difference between
Mob programming and Mob architecture. The latter refers to the
creation of and improvement of the architecture of software

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 8

systems; this is done by the whole team by using automated tools
and an external navigator who inspects the source code, models
architecture visits, requests refactoring and establishes priorities,
always in the company of the development team in the role as
observant.

Bohekhout (2016) used the Mob approach with good results for
programming and designing flows of processes. He recognizes the
benefits of this mode of work, he explains that it took him long to
find the optimal configurations of time, space, resources and
strategies; as he attained this, he successfully combined individual
modes and Mob. Table 1 includes the most important findings
identified in the literature we saw on pair programming and Mob
programming.

Table 1. Summary of the main findings reported in the analyzed literature on pair
programming and Mob programming

Pair programming Mob programming

• Pair programming in introductory
courses helps students get better
grades in more advanced courses
(Smith et al., 2018)

• Individual preparation along with pair
programming is beneficial to avoid
poor academic performance of
students (Lee et al., 2016)

• More scientific experiments toward
knowing more about Mob
programming are necessary
(Lilienthal, 2017)

• Empirical validation of Mob
programming is required. (Balijepally
et al., 2017)

• Pair programming is a useful tool that
enhances communication between
students, comprehension of subjects
and, moreover, triggers new ideas. (Du
et al., 2015)

• Pair programming improves the levels
of communication and reduces the
time in which the code is written.
(Saltz & Shamshurin, 2017)

• The development of software does not
have to be made between two people
all the time. Single-person and pair
activities can be alternated.
(Swamidurai & Umphress, 2015)

• Pair programming can be used
occasionally, especially for the most
complex parts of the software. (Meyer,
2018)

• Mob programming reduces
administrative processes and long
meetings; it promotes continuous
learning, satisfaction in teammates
and quality of the software. (Zuill,
2015)

• With Mon programming people know
more thoroughly the system they are
working in. At the beginning, however,
they move slowly and can show
unwillingness, lose interest and
become isolated. (Buchan & Pearl,
2018)

• With Mob programming, the ability to
listen and the consideration for others
can be improved. (Kerney, 2015)

• It may take a while to find the optimal
configurations of time, space,
resources and strategies to work with
Mob programming. (Bohekhout,
2016)

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 9

METHODOLOGY

Purpose and research questions

The purpose of our research was to compare students’ perceptions
on the approaches of individual, by pairs and Mob programming,
aimed to have empirically validated elements that enable valuing the
feasibility of implementing any of these three approaches. Thus, it
will be possible to establish future actions and strategies to facilitate
that they be adopted in college courses. This is important because,
currently, measures to determine comparisons are scarce in this
context, especially, regarding Mob programming.

Guiding questions of the survey were: which of these three
approaches (individually, by pairs, Mob) is mostly appropriate in the
context of college teaching? What is the perception of students about
them?; and, what are the differences between these modes?

Research design

For this research we used a sequentially explanatory design
(Hernandez, 2014), which consists in applying a quantitative
approach, to analyze data and obtain conclusions so that a
qualitative approach may be later employed aimed to deepen on
these results and achieve the interpretation of the whole analysis
(see figure 1).

We also applied a questionnaire and a statistical data analysis for the
quantitative approach, in addition to deep interviews for the
qualitative approach.

Figure 1. Sequential explanatory design.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 10

Participants

There were 24 students participating who were taking the subject of
Intermediate Programming in the third semester of the
undergraduate program in Information Technologies. The age range
was between 19 and 25 years, with a mean of 20.70 and a standard
deviation of 2.01. Of these, 20 were males and four females. During
the development of this work, the students attended regular lesson
sessions and were not aware that his research was in progress;
therefore, we did not give them any incentive or remuneration for
their answers. All the participants had previously taken and passed
the college courses: Fundamentals of computing and programming
methodology and Basic programming. The former one was centered
on the necessary logic to realize computer algorithms and the latter,
in solving problems of basic programming structures using Visual
Basic.Net language.

Setting

This work was done at the computer lab students usually go for their
programming lessons. At this place, there is access to 30 computers
with an Intel i5 processor, 21-inch monitors and a 1 tb hard drive.
The Windows 8 operation system is installed on these machines as
well as the Visual Studio integrated development environment using
Visual Basic.NET language.

Procedure

Every participant had individual work experience, as this was the
usual way of doing their practices until then; however, they were not
aware of the pair programming and Mob programming approaches.
For purposes of this research, first off, at a class session, we asked
participants to do individual programming. In a different session,
we asked to do pair work and, in a third session, with Mob
programming. Finally, we invited them to answer the questionnaire
only based on the experience of these three work instances.

Each session was two hours long. Time was distributed as follows:
for the first fifteen minutes we waited for all the students to arrive at
the lab; then, we called the roll and explained the rules of working
with each methodology employed; then, we presented the program
they were to work on and randomly assigned students to the
computers in the lab. In the case of pair and Mob modes, the teams
were also created randomly. All of these activities were done un

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 11

twenty minutes. The students had 85 minutes to develop the
proposed program. During the research, none of the students was to
make contact with anyone outside his/her team. Neither were they
allowed to copy the work of another person; however, they could
consult information using Internet.

Individual programming session

In the individual mode, each student was assigned to a computer.
The program requested used a software-oriented architecture for
three-layer objects and implemented a list of registries stored in a
database using a table.

Pair programming session

Each pair of students used a single computer, where each participant
had to use the keyboard for five minutes and then assign it to his
partner. The researchers measured the time and told them when to
change use of the keyboard. The program requested used a three-
layer object-oriented architecture and implemented several
selective lists of stored registries in a database using several tables.

Mob programming session

The students were randomly assigned to four teams of six persons
who were located in different workspaces, however, within the same
practice lab area they attend class. Each team was assigned a single
computer with the features described in the “setting” section of this
article. In addition, six chairs, a projector, a projection surface, and
a workspace were assigned. Each team was self-organized to work.
They were free to do this, provided, however, that the team worked
together, in a respectful manner and consistent with the principles
of Mob programming. The program requested was a graphic
interface to carry out diverse registry consultations stored in a
database and used a three-layer software-oriented architecture.

Quantitative approach method

We designed a questionnaire with the questions shown on table 2
and we gave it to the students, we asked them to evaluate each aspect
for each work mode by using a one-to-ten scale, where one is the
lowest score, which represents “bad” or “scarce”, and ten, the
highest, which means “excellent” or “a lot”. We decided to use this
scale because students find it simple to use it when they do
evaluations, as they related it to school grades they get at the

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 12

university. Furthermore, in a previous research conducted by our
team, some of the students found it difficult to evaluate and express
their perceptions using a one-to-five scale.

Table 2. Evaluations requested from participants of individual, by pairs and
Mob work

Question Aspect evaluated

1 Overall grade of the methodology

2 Ability to understand the methodology

3 Ability to implement the methodology

4 Ability to adapt the methodology

5 Ability to work with the methodology

6 Experience of working with the methodology

7 Detection of errors in the program

8 Quickness to finish the program

9 Quality of the development process

10 Ability to communicate

11 Motivation to work on the project

12 Organization for work

13 Level of confidence in the success of the project

14 Level of satisfaction with the work done

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 13

Every answer was captured by using the SPSS package, where a
review and data clearing process was performed. We did not find any
lost or atypical values. Later on, the answers were changed as
specified in table 3. These values in the new one-to-five scale were
used for all the procedures and analyses done in this research.

Table 3. Answers provided by students and categorized values used in the
quantitative analysis

Former values (answers from
the students)

New values (new values
transformed)

1,2 1

3,4 2

5,6 3

7,8 4

9,10 5

Afterwards, a factor analysis was done taking questions 2 to 14 into
consideration. We found three dimensions which we labeled with
representative names. Then, we calculated Cronbach’s alpha for
each of them. In this process we also had the participation of each
question in its respective dimension. Later, we calculated the
weighted value for each dimension; for that purpose, we multiplied
each categorized answer of the students by the percentage
corresponding to the participation of each question in said
dimension.

Finally, we conducted Friedman’s tests to find significant statistical
differences between the values of each of the dimensions for the
three methodological approaches in the study. In addition, we
sought differences between the global score assigned by students to
each of the three methodological approaches by using Friedman’s
test. Figure 2 shows a global scheme of the steps included in the
analysis of quantitative data.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 14

Figure 2. Quantitative analysis schemes done in this research.

Method for the qualitative focus

For the qualitative component in this research we took the
quantitative results obtained as reference: pair programming had
the highest scores, whereas Mob programming and the individual
mode got the lowest scores. For this reason, we did interviews with
open questions oriented to learn more about the reasons of these
findings. We formulated the following questions: What are the
advantaged you perceive of pair programming over Mob
programming and individual programming? What are the main
problems you found when working with Mob programming? What
are the main problems you found when working with individual
programming? What is your opinion on the possibility of
implementing pair programming or Mob programing as a daily
practice in college courses?

Of the 24 students who partook in the quantitative phase, five were
available and willing to participate in the qualitative phase
interviews. Although only two provided extensive and rich in
content interviews, whereas the other three provided ideas in short
phrases which were contained in the answers of the two students
present this article.

In this sense, Hernandez (2014) says that in the case of qualitative
approaches, the sample need not be statistically representative of
the population in the study, and that the size thereof is determined
by three factors: the operational capacity and data recollection,
accessibility of study units and saturation of categories, which
implies the number of cases that allow answering research
questions. Thus, in qualitative studies it is also possible to

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 15

reformulate the sample. This means that unforeseen cases at the
beginning may be added in the process, or rather, others may be
excluded that were foreseen.

RESULTS

Quantitative results

In order to find the three dimensions shown in table 4, we performed
an exploratory factor analysis by using the maximum plausibility
extraction method based on eigenvalues greater than 1. The rotation
method was Promax with Kappa = 4. We obtained a KMO mean of
0.704; Bartlett’s sphericity test showed the values of Chi2 = 364.60.
gl = 78 and sig.= 0. Total explained variance with three factors was
80.32%. Confirmatory factor analysis to exactly find three factors
had the same results. Cronbach’s alpha calculations and the
contribution percentages of each variable to its dimension are
included in tables 5, 6 and 7.

Table 4. Dimensions found in the questionnaire

Dimension Question Aspect to evaluate

Aspects of process and
team management

2 Ability to understand the methodology

4 Ability to adapt the methodology

9 Quality of the development process

10 Ability to communicate

12 Organization for work

13
Level of confidence in the success of the

project

Aspects of implementation 3 Ability to implement the methodology

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 16

5 Ability to work with the methodology

6
Experience of working with the

methodology

11 Motivation to work on the project

14 Level of satisfaction with the work done

Aspects of debugging

7 Detection of errors in the program

8 Quickness to finish the program

Table 5. Participation percentage for each question of dimension 1: process and
team management aspects (Cronbach’s alpha = 0.94)

Id Aspect to evaluate
Overall corrected
correlation of the

elements

Participation of
each question in this

dimension

2
Ability to understand the
methodology

0.846 0.170

4 Ability to adapt the methodology 0.866 0.174

9
Quality of the development
process

0.795 0.160

10 Ability to communicate 0.872 0.175

12 Organization for work 0.850 0.171

13
Level of confidence in the success
of the project

0.732 0.147

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 17

Table 6. Participation percentage for each question of dimension 2:
implementation aspects (Cronbach’s alpha = 0.925)

Id Aspect to evaluate
Overall corrected
correlation of the

elements

Participation of each
question in this

dimension

3
Ability to implement the
methodology

0.799 0.199

5
Ability to work with the
methodology

0.792 0.197

6
Experience of working with the
methodology

0.831 0.207

11
Motivation to work on the
project

0.775 0.193

14
Level of satisfaction with the
work done

0.823 0.205

Table 7. Participation percentage for each question of dimension 3: debugging
aspects (Cronbach’s alpha = 0.939)

Id Aspect to evaluate
Overall corrected
correlation of the

elements

Participation of each
question in this

dimension

7 Detection of errors in the program 0.889 0.500

8 Quickness to finish the program 0.889 0.500

Friedman’s test applied to establish differences in the first
dimension (process and team management aspects) was significant
(PValue= 0.005, Chi-square = 10.564, n = 24, gl = 2); the highest
scores were for pair programming (average range = 2.46) and the

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 18

lowest, for Mob programming (average range = 1.63). Although we
found no significant statistical differences in Friedman’s test, in the
second dimension (implementation aspects) (PValue = 0.108, Chi-
square = 4.447, n = 24, gl = 2), we noticed asymmetric tendencies of
pair programming to obtain the highest scores (average range =
2.31) and Mob programming for the lowest scores (average range =
1.83).

In the third dimension (bugging aspects) we did recognize
significant differences with Friedman’s test (PValue = 0.031, Chi-
square = 6.969, n = 24, gl = 2); the highest scores were for pair
programming (average range = 2.23) and the lowest, for individual
programming (average range = 1-65). For the global score which
students gave to methodologies we noticed no significant differences
with a level of confidence of 95% as reference, but it may be
considered significant with a level of confidence of 90% as reference,
as this is an initial research. The results from this comparison with
Friedman’s test were: PValue = 0.062, Chi-square = 5.548, gl = 2.
The highest scores were for pair programming (average range =
2.29) and the lowest, for Mob programming (average range = 1.75).

Qualitative results

The interview for the qualitative section disclosed that students like
to do pair programming because they see it as a middle point
between not programming with anyone and doing it with a large
group. Individual programming may give rise to mistakes, tension,
mental block, and uneasiness because of the responsibility of the
work; on the other hand, programming with many persons at the
same time may give rise to disruption, stress, distraction and
imbalance among the participants’ work. Table 8 contains a
summary of the answers provided by participants.

Table 8. Summary of interviews performed

Question

Summary of answers of
participant 1 (male, 20

years old, third semester
student)

Summary of answers of
participant 2 (male, 21

years old, third semester
student)

• What advantages do
you see about pair
programming
compared to Mob and
individual
programming?

• Having a partner to
solve problems

• Work and
communication are
under more control.

• Shared responsibility
• Pair programming is a

middle point between
being completely
alone and being
surrounded by a lot of

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 19

• Work is better
organized.

• Support from another
person during the
whole process

people. Like this, the
disadvantages of
working alone and in
Mob are overcome

• More ability to reach
agreements for work

• What are the main
problems you
encountered working
with Mob
programming?

• Working with so many
people at the time
generates more stress

• Noise affects
concentration

• A more private
workspace is necessary

• The heavier work is
done by a few people

• Not everyone explains
their work to the rest

• Lack of organization
for working and
decision making

• Not everyone
collaborates with the
same interest

• Different levels of
skills and knowledge

• Immature attitudes
from some
participants.

• What are the main
problems you
encountered working
individually?

• Sometimes there is
tension or a working
block, especially if you
don’t know how to solve
the problems that come
up. You must ask for
help from another
classmate or the
teacher.

• You feel a complete
responsibility of the
project.

• More mistakes are
made and it takes
longer to find them
and correct them

• What is your opinion
on the possibility of
implementing pair
programming or Mob
programming as an
everyday practice in
university courses?

• Implementing pair
programming would be
alright

• It would be nice if
students could pick a
work partner

• Mob programming
could be implemented
in more advanced
courses with students of
higher semesters who
know each other better
and are more focused in
their work

• Implementing Mob
modality wouldn’t be
good if there aren’t
more private
workspaces and
enough projectors for
each team. Maybe
students would need
training to work in
teams

• Pair programming
would be alright but
there would be a need
to make sure each
couple is compatible
to work in the same
project.

DISCUSSION

The results of this work show that pair programming could be the
most appropriate approach as a didactic strategy, as it is well
accepted by students and, furthermore, implementing it does not
require of additional equipment or adaptations to the workspace.
Students could organize in teams of two persons to use the
computers as they are installed and distributed in the computer labs.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 20

Students’ perception favors pair programming over individual and
Mob programming, as they consider that it is good to share
responsibilities, but not with so many people at the same time,
because things could easily go out of control. In this sense, in Mob
programming, the attitude and behavior of some students affect
aspects such as communication, understanding of the problem and
organizing tasks. On the other hand, regarding individual
programming, students feel that they make more mistakes and that
it takes them longer to find them and to correct them.

The position of the authors of this work agree with those of Sadath
et al. (2018), who state that teaching software engineering in college
classrooms is outdated from the reality currently experienced by
companies. For this reason, it is important to align thematic
contents of courses and, at the same time, to promote significant
learning by means of dynamic ways to develop software that are
directly applicable to companies. Therefore, it is necessary to
perform research on the approaches used in the classroom, for
students to learn how to develop software. In the specific case of
Mob programing, we agree with Sharman (2014), Lilenthal (2017)
and Balijepally et al. (2017) on the need to have more guiding
measures and evaluations.

Our results are similar to those of Du et al. (2015) and Saltz &
Shamshurin (2017). Just like them, we found that pair programming
improves communication among students. They are also analogous
to those of Gomez & Aguileta (2018), because the participants
believed it was easier to find and correct mistakes with pair
programming, aided by a comprehensive development
environment. We also agree with Swamidurai & Umphress (2015)
and Meyer (2018) in the fact that students do not have to do pair
programming all the time. An evolutionary hybrid approach, which
is the product of continuous adaptation of needs, as mentioned by
Wilson (2015), could be beneficial for the academic achievement of
students.

For the correct interpretation of our results the reader ought to
consider that this study was done with a small sample of a college
course at a beginner-intermediate level. Further research is required
to test these findings and to deepen on them.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 21

CONCLUSIONS AND RECOMMENDATIONS

The students who experienced the three work modes studied in this
article showed their preference for pair programming. Using Mob
programming was not reported to be favorable in these aspects
because of the multiple interaction of participants and of the lack of
consensus in the organization and of making decisions. Individual
programming, on the contrary, restricts continuous interaction with
other people and this may be a barrier if participants are not sure
how to solve the problems raised. We recommend that pair work be
promoted for programming college courses. This practice may be
easily implemented at facilities existing in computer laboratories at
the universities.

It is necessary to continue doing research to learn what the most
proper manner is to teach programming. In this sense, application
of collaborative programming ought to be done in greater depth
regarding its diverse modes and beginner, intermediate and
advanced students are to be involved.

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 22

REFERENCES

Aottiwerch, N. y Kokaew, U. (2018). The Analysis of Matching Learners in
Pair Programming Using K-Means, in 5th International
Conference on Industrial Engineering and Applications (362-
366). https://doi.org/10.1109/IEA.2018.8387125

Arsenovski, D. (2016). Swarm: Beyond pair, beyond Scrum. Agile
Alliance.

Balijepally, V.; Chaudhry, S. y Sridhar , N. (2017). Mob Programming – A
Promising Innovation in the Agile Toolkit, in Twenty-third
Americas Conference on Information Systems, Boston, 2017 -
Systems Analysis and Design (SIGSAND), 1-9. Boston, Estados
Unidos: AIS Electronic Library.

Bohekhout, K. (2016). Mob Programming: Find Fun Faster. Lecture Notes
in Business Information Processing, 185-192.
https://doi.org/10.1007/978-3-319-33515-5_15

Buchan, J. y Pearl, M. (2018). Leveraging the Mob Mentality: An
Experience Report on Mob Programming. EASE 2018 - Evaluation
and Assessment in Software Engineering (pp. 1-6). Christchurch,
Nueva Zelanda: Editorial de la Universidad de Canterbury.
https://doi.org/10.1145/3210459.3210482

Du, W.; Ozeki, M.; Nomiya, H.; Murata, K.; y Araki, M. (2015). Pair
programming for enhancing communication in the fundamental C
language exercise, in 2015 IEEE 39th Annual International
Computers, Software & Applications Conference (664-665). IEEE
Computer Society. https://doi.org/10.1109/COMPSAC.2015.67

Gómez, O. y Aguileta, A. (2018). Influence on the use of an IDE as tool
support in the pair programming: A controlled experiment, in
IEEE Latin America Transactions, 16(3), 948-956.
https://doi.org/10.1109/TLA.2018.8358678

Hernández Sampieri, R. (2014). Metodología de la investigación. Ciudad
de México: McGrawHill.

Kerney, R. (2015). Mob Programming - My first team. Estados Unidos:
Agile Alliance.

Lee, L.-K.; Au, O.; So, R. y Nga-Inn, W. (2016). Being Well-Prepared for
Regular Pair-Programming Helps At-Risk Students, in 2016
International Symposium on Educational Technology (65-68).
https://doi.org/10.1109/ISET.2016.22

https://doi.org/10.1109/IEA.2018.8387125
https://doi.org/10.1007/978-3-319-33515-5_15
https://doi.org/10.1145/3210459.3210482
https://doi.org/10.1109/COMPSAC.2015.67
https://doi.org/10.1109/TLA.2018.8358678
https://doi.org/10.1109/ISET.2016.22

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 23

Lilienthal, C. (2017). From Pair Programming to Mob Programming to
Mob Architecting, in International Conference on Software
Quality - SWQD2017 - Software, Quality, Complexity and
Challenges of Software (3-12). Vienna, Austria: Springer.
https://doi.org/10.1007/978-3-319-49421-0_1

Meyer, B. (2018). Making Sense of Agile Methods. IEEE Software, 35(2),
91-94. https://doi.org/10.1109/MS.2018.1661325

Poonam, R. y Yasser, C. (2018). An Experimental Study to Investigate
Personality Traits on Pair Programming Efficiency in Extreme
Programming, in 2018 5th International Conference on Industrial
Engineering and Applications (95-99).
https://doi.org/10.1109/IEA.2018.8387077

Pyhäjärvi, M. y Falco, L. (2018). The Mob Programming Guidebook. n/d:
LeanPub.

Sadath, L.; Karim, K. y Gill, S. (2018). Extreme Programming
Implementation in Academia for Software Engineering
Sustainability, in 2018 Advances in Science and Engineering
Technology International Conferences (ASET) (1-6). Abu Dhabi.
https://doi.org/10.1109/ICASET.2018.8376925

Saltz, J. y Shamshurin, I. (2017). Does Pair Programming work in a Data
Science Context? An Initial Case Study, in 2017 IEEE International
Conference on Big Data (BIGDATA) (2348-2354).
https://doi.org/10.1109/BigData.2017.8258189

Schartman, M. (2014). My Experience with Mob Programming. Appfolio
Engineering.

Smith, M.; Giugliano, A. y DeOrio, A. (2018). Long Term Effects of Pair
Programming. IEEE Transactions on Education, 61(3), 1-8.
https://doi.org/10.1109/TE.2017.2773024

Swamidurai, R. y Umphress, D. (2015). Inverted Pair Programming, in
Proceedings of the IEEE SoutheastCon 2015 (1-6). Fort
Lauderdale, Florida: IEEE.
https://doi.org/10.1109/SECON.2015.7133010

Wilson, A. (2015). Mob Programming - What works, what doesn´t.
Helsinki, Finlandia: Springer Link. https://doi.org/10.1007/978-
3-319-18612-2 33

Zuill, W. (2015). Mob Programming - A Whole Team Approach.
https://www.agilealliance.org/wp-
content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf

https://doi.org/10.1007/978-3-319-49421-0_1
https://doi.org/10.1109/MS.2018.1661325
https://doi.org/10.1109/IEA.2018.8387077
https://doi.org/10.1109/ICASET.2018.8376925
https://doi.org/10.1109/BigData.2017.8258189
https://doi.org/10.1109/TE.2017.2773024
https://doi.org/10.1109/SECON.2015.7133010
https://doi.org/10.1007/978-3-319-18612-2%2033
https://doi.org/10.1007/978-3-319-18612-2%2033
https://www.agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf
https://www.agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf

 Apertura, vol. 12, no. 1 (2020) | April 2020-September 2020
 | eISSN 2007-1094 | Universidad de Guadalajara 24

This is an open access article. Users can read, download, distribute, print
and link to the full text, as long as it is non-profit and the source is quoted.

HOW TO CITE

Roque Hernández, Ramón Ventura; Guerra Moya, Sergio Armando &
López Mendoza, Adán. (2020). Solo, pair or Mob programming: Which
should be used in university? Apertura, 12(1), pp. 39-55.
http://dx.doi.org/10.32870/Ap.v12n1.1791

http://dx.doi.org/10.32870/Ap.v12n1.1791

